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Step 3. Nonnegative Borel-measurable functions. Just as in the proof of The-
orem 1.5.1 we construct a sequence of nonnegative simple functions 0 < g; <
g2 < --- < g such that lim, o gn(z) = g(x) for every € R. We have already
shown that o
Ego(X) = [ an()f(a)da

-0
for every n. We let n — oo, using the Monotone Convergence Theorem, The-
orem 1.4.5, on both sides of the equation, to obtain (1.5.7).

Step 4. General Borel-measurable functions. Let g be a general Borel-measur-
able function, which can take positive and negative values. We have just
proved that
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Adding these equations, we obtain (1.5.6). If the expression in (1.5.6) is finite,
we can also subtract these equations to obtain (1.5.7). O

1.6 Change of Measure

We pick up the thread of Section 3.1 of Volume I, in which we used a positive
random variable Z to change probability measures on a space 2. We need
to do this when we change from the actual probability measure P to the
risk-neutral probability measure Pi in models of financial markets. When {2
is uncountably infinite and P(w) = lP’(w) = 0 for every w € 2, it no longer
makes sense to write (3.1.1) of Chapter 3 of Volume I,

P(w)
Z(w) = —F= .6.
@ =5y (16.1)
because division by zero is undefined. We could rewrite this equation as
Z(w)P(w) = P(w), (1.6.2)

and now we have a meaningful equation, with both sides equal to zero, but the
equation tells us nothing about the relationship among P, P, and Z. Because



1.6 Change of Measure 33

P(w) = IF’(w) = 0, the value of Z(w) could be anything and (1.6.2) would still

hold.
However, (1.6.2) does capture the spirit of what we would like to accom-

plish. To change from IP to IP, we need to reassign probabilities in {2 using Z to
tell us where in 2 we should revise the probability upward (where Z > 1) and
where we should revise the probability downward (where Z < 1). However,
we should do this set-by-set, rather than w-by-w. The process is described by
the following theorem.

Theorem 1.6.1. Let (2, F,P) be a probability space and let Z be an almost
surely nonnegative random variable with EZ = 1. For A € F, define

B(A) = /A Z(w) dP(w). (1.6.3)

Then P is a probability measure. Furthermore, if X is a nonnegative random
variable, then

EX = E[X Z]. (1.6.4)
If Z is almost surely strictly positive, we also have
~ Y
EY =E | —= .0.
- 165

for every nonnegative random variable Y.

_ The~1E appearing in £1.6.4) is expectation under the probability measure
P (ie., EX = [, X (w) dP(w)).

Remark 1.6.2. Suppose X is a random variable that can take both positive
and negative values. We may apply (1.6.4) to its positive and negative parts
X% = max{X,0} and X~ = max{—X,0}, and then subtract the resulting
equations to see that (1.6.4) holds for this X as well, provided the subtraction
does not result in an oo — oo situation. The same remark applies to (1.6.5).

PROOF OF THEOREM 1.6.1: According to Definition 1.1.2, to check that Pis
a probability measure, we must verify that P(£2) = 1 and that P is countably
additive. We have by assumption

B(0) = /QZ(w) dP(w) = EZ = 1.

For countable additivity, let A;, As,... be a sequence of disjoint sets in F,
and define B, = U}_, Ak, Boo = U2 ; Ai. Because

Ig, <Ip, <Ip, <..

and lim,_,. Ip, = Ip_, we may use the Monotone Convergence Theorem,
Theorem 1.4.5, to write
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B(Bo,) = / Ip.. (w)Z(w) dP(w) = lim / I, (0)Z(w) dP(w).
N n—00 0

But I, (w) = > 7,14, (w), and so

/Q Ip, (w)Z(w) dP(w) = ; /n 14, (w)Z(w) dP(w) = ;P(Ak).

Putting these two equations together, we obtain the countable additivity prop-

erty
P (kU Ak) = lim ;ﬁi(Ak) = ;iﬁ(Ak).
=1 = =

Now suppose X is a nonnegative random variable. If X is an indicator
function X = 14, then

EX = B(4) = /Q La(w) Z(w) dP(w) = E[142] = E[X Z],

which is (1.6.4). We finish the proof of (1.6.4) using the standard machine
developed in Theorem 1.5.1. When Z > 0 almost surely, % is defined and we

may replace X in (1.6.4) by ¥ to obtain (1.6.5). O

Definition 1.6.3. Let {2 be a nonempty set and F a o-algebra of subsets of
2. Two probability measures P and P on ({2, F) are said to be equivalent if
they agree which sets in F have probability zero.

Under the assumptions of Theorem 1.6.1, including the assumption that
Z > 0 almost surely, P and P are equivalent. Suppose A € F is given and
P(A) = 0. Then the random variable I4Z is [P almost surely zero, which
implies

P(A) = / I4(w)Z(w) dP(w) = 0.
2
On the other hand, suppose B € F satisfies IIAE’(B) = 0. Then %]IB = 0 almost

surely under IF’, o)
~[1
=Ig| =0.
]E[ . B] 0

Equation (1.6.5) implies P(B) = Elg = 0. This shows that P and P agree
which sets have probability zero. Because the sets with probability one are
complements of the sets with probability zero, P and IP agree which sets have
probability one as well. Because P and [P are equivalent, we do not need to
specify which measure we have in mind when we say an event occurs almost
surely.

In financial models, we will first set up a sample space {2, which one
can regard as the set of possible scenarios for the future. We imagine this
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set of possible scenarios has an actual probability measure IP. However, for
purposes of pricing derivative securities, we will use a risk-neutral measure P.
We will insist that these two measures are equivalent. They must agree on
what is possible and what is impossible; they may disagree on how probable
the possibilities are. This is the same situation we had in the binomial model; P
and P assigned different probabilities to the stock price paths, but they agreed
which stock price paths were possible. In the continuous-time model, after we
have P and PP, we shall determine prices of derivative securities that allow us to
set up hedges that work with P-probability one. These hedges then also work
with P-probability one. Although we have used the risk-neutral probability to
compute prices, we will have obtained hedges that work with probability one
under the actual (and the risk-neutral) probability measure.

It is common to refer to computations done under the actual measure
as computations in the real world and computations done under the risk-
neutral measure as computations in the risk-neutral world. This unfortunate
terminology raises the question whether prices computed in the “risk-neutral
world” are appropriate for the “real world” in which we live and have our
profits and losses. Our answer to this question is that there is only one world
in the models. There is a single sample space {2 representing all possible future
states of the financial markets, and there is a single set of asset prices, modeled
by random variables (i.e., functions of these future states of the market). We
sometimes work in this world assuming that probabilities are given by an
empirically estimated actual probability measure and sometimes assuming
that they are given by risk-neutral probabilities, but we do not change our
view of the world of possibilities. A hedge that works almost surely under one
assumption of probabilities works almost surely under the other assumption
as well, since the probability measures agree which events have probability
one.

The change of measure discussed in Section 3.1 of Volume I is the spe-
cial case of Theorem 1.6.1 for finite probability spaces, and Example 3.1.2 of
Chapter 3 of Volume I provides a case with explicit formulas for P, P, and Z
when the expectations are sums. We give here two examples on uncountable
probability spaces.

Ezample 1.6.4. Recall Example 1.2.4 in which 2 = [0,1], P is the uniform
(i.e., Lebesgue) measure, and

b
]P’[a,b]=/ 2wdw=0%"-a? 0<a<b<l (1.2.2)
We may use the fact that P(dw) = dw to rewrite (1.2.2) as
Pla,b] = / 2w dP(w). (1.2.2)
[a,b]

Because B[0, 1] is the o-algebra generated by the closed intervals (i.e., begin
with the closed intervals and put in all other sets necessary in order to have a
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o-algebra), the validity of (1.2.2)’ for all closed intervals [a,b] C [0, 1] implies
its validity for all Borel subsets of [0, 1]:

P(B) = / 2w dP(w) for every Borel set B C R.
B

This is (1.6.3) with Z(w) = 2w.
Note that Z(w) = 2w is strictly positive almost surely (P{0} = 0), and

1
]EZ=/ 2wdw = 1.
0

According to (1.6.4), for every nonnegative random variable X(w), we have
the equation

/0 1 X (w) dP(w) = /0 : X(w) - 2w dw.
This suggests the notation
dP(w) = 2w dw = 2w dP(w). (1.6.6)
O

In general, when P, ﬁ, and Z are related as in Theorem 1.6.1, we may
rewrite the two equations (1.6.4) and (1.6.5) as

/ X (w) dB(w) = [ X () Z(w) dP(w),
n n

[ Yware = [ 7 db).

A good way to remember these equations is to formally write Z(w) = %(z—;.

Equation (1.6.6) is a special case of this notation that captures the idea behind
the nonsensical equation (1.6.1) that Z is somehow a “ratio of probabilities.”
In Example 1.6.4, Z(w) = 2w is in fact a ratio of densities, with the denomi-
nator being the uniform density 1 for all w € [0, 1].

Definition 1.6.5. Let (12, F,P) be a probability space, let P be another proba-
bility measure on (12, F) that is equivalent to P, and let Z be an almost surely

positive random variable that relates P and P via (1.6.3). Then Z is called the
Radon-Nikodym derivative of P with respect to P, and we write

7z =

S8,

Ezample 1.6.6 (Change of measure for a normal random variable). Let X be a
standard normal random variable defined on some probability space (2, F, P).



1.6 Change of Measure 37

Two ways of constructing X and (§2, F,P) were described in Example 1.2.6.
For purposes of this example, we do not need to know the details about
the probability space (£2,F,P), except we note that the set 2 is necessarily
uncountably infinite and P(w) = 0 for every w € 2.

When we say X is a standard normal random variable, we mean that

ux(B) =P{X € B} = / () dx for every Borel subset B of R, (1.6.7)
B

where

z2

z

1 _
p(z) = ﬁe

is the standard normal density. If we take B = (—o0, ], this reduces to the
more familiar condition

b
P{X <b} = / ¢(z)dzx for every b € R. (1.6.8)

In fact, (1.6.8) is equivalent to the apparently stronger statement (1.6.7). Note
that EX = 0 and variance Var(X) = E(X —EX)? = 1.

Let @ be a constant and define Y = X + 6, so that under P, the random
variable Y is normal with EY = @ and variance Var(Y) = E(Y —EY)? = 1.
Although it is not required by the formulas, we will assume 6 is positive for
the discussion below. We want to change to a new probability measure P on 2
under which Y is a standard normal random variable. In other words, we want
EY =0 and Var(Y) = E(Y —EY)? = 1. We want to do this not by subtracting
0 away from Y, but rather by assigning less probability to those w for which
Y (w) is sufficiently positive and more probability to those w for which Y (w)
is negative. We want to change the distribution of Y without changing the
random variable Y. In finance, the change from the actual to the risk-neutral
probability measure changes the distribution of asset prices without changing
the asset prices themselves, and this example is a step in understanding that
procedure.

We first define the random variable

Z(w) = exp {—OX(w) - %02} for all w € 2.

This random variable has two important properties that allow it to serve as a

Radon-Nikodym derivative for obtaining a probability measure P equivalent
to P:

((i) Z(w) > 0 for all w € 2 (Z > 0 almost surely would be good enough), and
i) EZ = 1.

Property (i) is obvious because Z is defined as an exponential. Property (ii)
follows from the integration
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o 1
EZ = / exp {—9:1: - 502} o(z)dz

— 00

=\/%/_Zexp{—%(x2+20x+02)}dx
= #/w exp{—l(a:+9)2}dx

-5 el }d”’

where we have made the change of dummy variable y = x + 6 in the last
step. But ‘/1— f * exp{- %yz}dy, being the integral of the standard normal
density, is equal to one.

We use the random variable Z to create a new probability measure P by
adjusting the probabilities of the events in 2. We do this by defining

P(A) = /A Z(w) dP(w) for all A € F. (1.6.9)

The random variable Z has the property that if X (w) is positive, then
Z(w) < 1 (we are still thinking of 8 as a positive constant). This shows that
P assigns less probability than IP to sets on which X is positive, a step in the
right direction of statistically recentering Y. We claim not only that EY =0
but also that, under P, Y is a standard normal random variable. To see this,
we compute

P{Y < b} = / Z(w) dP(w)
{w;Y (w)<b}
= /n Ity (w)<b} Z (w) dP(w)

1
= /.Q ]I{X(w)Sb—O} €xXp {—GX((U) - 502} d]P’(w)

At this point, we have managed to write P{Y < b} in terms of a function of
the random variable X, integrated with respect to the probability measure P
under which X is standard normal. According to Theorem 1.5.2,

1
/QH{X(W)gb—e} exp {—GX(W) - 592} dP(w)

°° —0z—16°
= | Te<b-e3e™" 72" p(z)dz

— 00

—@r—192 _z2
e 973 T dg

_ E /—booa
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— L - —3(z+6)? g
V2T J_o
1 [ _ip
= —— [ e#ay,

where we have made the change of dummy variable y = £ + 0 in the last step.

We conclude that b
~ 1 1.2
P{Y <b =—/ e 2¥ dy,
Wsbp=7) v

which shows that Y is a standard normal random variable under the proba-
bility measure P. 0O

Following Corollary 2.4.6 of Chapter 2 of Volume I, we discussed how
the existence of a risk-neutral measure guarantees that a financial model is
free of arbitrage, the so-called First Fundamental Theorem of Asset Pricing.
The same argument applies in continuous-time models and in fact underlies
the Heath-Jarrow-Morton no-arbitrage condition for term-structure models.
Consequently, we are interested in the existence of risk-neutral measures. As
discussed earlier in this section, these must be equivalent to the actual proba-
bility measure. How can such probability measures P arise? In Theorem 1.6.1,
we began with the probability measure P and an almost surely positive ran-
dom variable Z and constructed the equivalent probability measure P. It turns
out that this is the only way to obtain a probability measure P equivalent to
P. The proof of the following profound theorem is beyond the scope of this
text.

Theorem 1.6.7 (Radon-Nikodym). Let P and P be equivalent probabil-
ity measures defined on (£2,F). Then there exists an almost surely positive
random variable Z such that EZ =1 and

P(A) = /A Z(w) dP(w) for every A € F.

1.7 Summary

Probability theory begins with a probability space (2, F,P) (Definition 1.1.2).
Here 2 is the set of all possible outcomes of a random experiment, F is the
collection of subsets of {2 whose probability is defined, and P is a function
mapping F to [0, 1]. The two axioms of probability spaces are P(£2) =1 and
countable additivity: the probability of a union of disjoint sets is the sum of
the probabilities of the individual sets.

The collection of sets F in the preceding paragraph is a o-algebra, which
means that () belongs to F, the complement of every set in F is also in F, and
the union of any sequence of sets in F is also in F. The Borel o-algebra in R,
denoted B(R), is the smallest o-algebra that contains all the closed interval
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Then we say that X is independent of the event A.
Show that if X is independent of an event A, then

/A 9(X (w)) dP(w) = P(A) - Eg(X)

for every nonnegative, Borel-measurable function g.

Exercise 1.10. Let P be the uniform (Lebesgue) measure on {2 = [0, 1]. De-

fine 0if0 .
_ i §w<§,
Z(w)_{2if%§w§1.

For A € B|0, 1], define
P(A) = /A Z(w) dP(w).

(i) Show that P is a probability measure. B

(ii) Show that if P(A) = 0, then P(A) = 0. We say that P is absolutely
continuous with respect to P. _

(iii) Show that there is a set A for which P(A) = 0 but P(A) > 0. In other

words, P and P are not equivalent.

Exercise 1.11. In Example 1.6.6, we began with a standard normal random
variable X under a measure P. According to Exercise 1.6, this random variable
has the moment-generating function

Ee*X = 3%’ for all u € R.

The moment-generating function of a random variable determines its distribu-
ti?112. In particular, any random variable that has moment-generating function
ez" must be standard normal.

In Example 1.6.6, we also defined Y = X + 0, where § is a constant, we
set Z = e-oX—%o2, and we defined P by the formula (1.6.9):

B(A) = /A Z(w) dP(w) for all A € F.

We showed by considering its cumulative distribution function that Y is a
standard normal random variable under P. Give another proof that Y is stan-
dard normal under P by verifying the moment-generating function formula

Ee*Y = e3* for all u € R.

Exercise 1.12. In Example 1.6.6, we began with a standard normal random
variable X on a probability space ({2, F,P) and defined the random variable
Y = X + 6, where 6 is a constant. We also defined Z = e~9X—%%" and used Z
as the Radon-Nikodym dcrivative to construct the probability measure P by
the formula (1.6.9):
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B(A) = / Z(w) dP(w) for all A € F.
A

Under ]F’, the random variable Y was shown to be standard normal.

We now have a standard normal random variable Y on the probability
space (£2,F,P), and X is related to Y by X = Y — 0. By what we have
just stated, with X replaced by Y and 6 replaced by —0, we could define
7 = Y39 and then use 7 as a Radon-Nikodym derivative to construct a
probability measure P by the formula

B(A) = /A Z(w) dP(w) for all A € F,

so that, under @, the random variable X is standard normal. Show that Z = %
and P=P.

Exercise 1.13 (Change of measure for a normal random variable). A
nonrigorous but informative derivation of the formula for the Radon-Nikodym
derivative Z(w) in Example 1.6.6 is provided by this exercise. As in that
example, let X be a standard normal random variable on some probability
space (§2,F,P), and let Y = X + 6. Our goal is to define a strictly positive
random variable Z(w) so that when we set

P(A) = /AZ(w) dP(w) for all A € F, (1.9.4)

the random variable Y under P is standard normal. If we fix @ € {2 and choose
a set A that contains @ and is “small,” then (1.9.4) gives

P(A) ~ Z(@)P(A),

where the symbol ~ means “is approximately equal to.” Dividing by P(A),
we see that _
P(A)
P(A)
for “small” sets A containing @. We use this observation to identify Z(@).
With @ fixed, let z = X (@). For € > 0, we define B(z,¢) = [z — £,z + §]
to be the closed interval centered at x and having length ¢. Let y = £ + 6 and
B(yve) = [y_ §’y+ %]
(i) Show that

~ Z (@)

2(w
%]P’{X € B(z,¢)} =~ # exp{—Xz( )}

(i) In order for Y to be a standard normal random variable under P, show
that we must have

%ﬁ{y € By, o)} ~ # exp {—Y;(w) } .
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(iii) Show that {X € B(z,¢)} and {Y € B(y,¢)} are the same set, which we
call A(w, ¢). This set contains @ and is “small” when € > 0 is small.
(iv) Show that

P(4) v _1p
The right-hand side is the value we obtained for Z(@) in Example 1.6.6.
Exercise 1.14 (Change of measure for an exponential random vari-

able). Let X be a nonnegative random variable defined on a probability space
(2, F, P) with the ezponential distribution, which is

IP’{XSa}=1—e")‘“, a >0,

where A is a positive constant. Let X be another positive constant, and define

Y -
Z = Xe_(A—A)X.

Define P by
B(A) = / ZdP forall A€ F.
A

(i) Show that P(£2) = 1.
(ii) Compute the cumulative distribution function

iﬁ’{XSa} fora>0
for the random variable X under the probability measure P.

Exercise 1.15 (Provided by Alexander Ng). Let X be a random variable
on a probability space (2, F,P), and assume X has a density function f(z)
that is positive for every x € R. Let g be a strictly increasing, differentiable
function satisfying

Jm_g(y) = oo, lim g(y) = co,

and define the random variable Y = g(X).

Let h(y) be an arbitrary nonnegative function satisfying ffooo h(y)dy = 1.
We want to change the probability measure so that h(y) is the density function
for the random variable Y. To do this, we define

7 he(0)g'(X)
o

(i) Show that Z is nonnegative and EZ = 1.
Now define P by

ﬁ(A):/Zd]P for all A € F.
A

(ii) Show that Y has density h under P.



